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Abstract eliminates the presence of the reactive
AlGaAs. The Al-free InGaP Schottky layer
This paper describes the low-noise With much less deep-level traps has great
and power performance of InGaP/InGaAs potential to make PHEMT operation more
PHEMTS lattice-matched to GaAs substrates. reliable. Lastly, the InGaP also serves as an
The 0.15-pm x 600-pm PHEMTs exhixd excellent etch-stop layetturing cate recess
extrapolated fand f_ of 70- and 150-GHz, etch and improves @te recess ufurmity
respectively. At10-GHz, 200-ym ddwes which could greatly enhances GaAs MMIC
yielded a low noise dure of 0.58-dB with  Yield and peformance.
very high associated gain. Furthermore, we _
have also demonstrated output power of 27- Experimental results on InGaP and
dBm, P.A.E. of 70.1%, and power gain of InAlGaP PHEMTs have been reported over
13.2-dB at 9-GHz on a 1200-unatg width  the last several years [1]-[4]. But, no power
InGaP PHEMT. This is the first reported result has been presented and all the material
demonstration of excellent lemoise and Was growneither by gasaurce MBE or by
power performance ahicrowave frequencies MOCVD which are a divergence from

from PHEMT with an InGaP Schottky industry standard MBE eactors used for
barrier. PHEMT epitaxial growth. This study

addresses these two issues. We explore the

use of solid source for high glity P-

Introduction containing epitaxialgrowth and opmized
processing technology to achieve good low-

The motivations for repcing the  hoise and power performance sitaneously.

conventional AlGaAs Schottky barrier layer
in the Pseudomorphic Highlectron Molility

Transistor (PHEMT) structure with an InGaP Fabrication
layer lattice-matched to GaAs are thifet.
First, InGaP does not have the DX-centers Double heterojunction PHEMT wafers

that are present in AlGaAs; consequently, with an Irp.485a0.52P barrier layer on top of

there are several orders of magnitude lessan undoped InGaAs channel were grown in a

deep level defect centers in the InGaP layer.solid-source Molecular Beam Epitaxy (MBE)
Second, use of InGaP as a Schottky layer alsoreactor ~ equipped with a  baffled
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polycrystalline GaP cell which was used as
the source for phosphorus. The layer
structure of the InGaP PHEMT is described in
Fig. 1. The thickness of the InGaP Schottky
layer that replaced AlGaAs i$30-A. The
ohmic metal wasformed using AuGe/Ni
alloy. The cotact resistance of ohmic metal
was measured to b&1-ohm-mm. PHEMTSs
based on the InGaP/InGaAs/GaAs
heterostructure were fabricated witlouble
recessed and 0.15-unatg length T-shaped
gates using Ti/Pt/Au metals.
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Fig. 1 The layer
InGaP/InGaAs PHEMT.

structure of the

Small Signal and Power Results

I-V curves of an InGaP PHEMT
consisting of two 75-um fingers is shown in
Fig. 2. It exhibits a small knee voltage, high
g,, of 500-m3mm and high arrent density of
greater tha®40-mAmm. The device gate to
drain breakdown Mtage was evaluated to be
9.5-V at 1-mAmm.

An InGaP PHEMT with gate width of
600-um was on-wafemeasured at V= 3V
and V, = -0.28V for S-pametersrom 1- to
50-GHz. As shown in Fig. 3, device yielded
an extrapolated, bf 70-GHz at a slope of —
20-dB per écade. Same gain raiff can be
applied to determine the othergtire of
merit: f . An extrapolated f based on the
MSG at34-GHz and 6-dB peratave decay is
approxmately 150-GHz.

Fig. 2 I-V curves of a 0.15-ym x 150-um
PHEMT. V, of top curve is 0.8 volt.
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Fig. 3 Plots ofH," and MSG as &unction of
frequency for a 600-um wide InGaP PHEMT.

200-ym wide InGaP PHEMTs were
mounted in a fixture and tested at 10-GHz for
noise and gain performance. De yielded
about 0.6-dB noise figure across a wide range
of drain currents from 12- to 32-mA.

When tuned for minimum noise figure
at 10-GHz, the transistor has a noise figure of
0.58-dB and assmated gain ofl6.7-dB at
= 1.5-V and | = 22-mA adlllustrated in Fig.

4. The measured small signal RF
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performance is comparable with that of the P.A.E. and tested at 9-GHz for drainltages

best measured AlGaAs/InGaAs PHEMTSs.
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Fig. 4 Plot of minimum noise figure and
associated gain versus drainrent at 10-
GHz.
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Fig. 5. 9-GHz power performance as a
function of input power. The DC bias
conditions were Y= 5.5-V, V, = -0.7-V.

The 0.15-ym x 1200-um PHEMTs
with 12 gate fingers were tundéolr maximum

from 2- to 6.5-V. The power performance at
a drain bias of 5.5-V and a drain quiescent
current of 53-mA idllustrated in Fig. 5. At
P, = 13.8-dBm, the dewe delivered an
excellent P.A.E. of70.1-percent, power gain
of 13.2-dB and an output power of 27-dBm.
In addition, the ame device exhibite@8.2-
dBm output power and 63.5% P.AE. at
V=6.5-V. As drain bias went down to 2
volts, we observed substantial decrease in
output power and power gain, but steady peak
P.A.E. of around 60%.

Conclusions

The first demonstration of very high
efficiency X-band power p&ormance for a
new family of PHEMTs at a range of
operating voltagesrom 2 to 6.5 volts are
reported. Additionally, the use of an
industry-standard solid source MBEactor
for growing wafers in this study and the
superior intrinsic propéies of InGaP make it
an attractive and direct replacemdat the
AlGaAs Schottky layer.

We have demonstrated that the
InGaP/InGaAs/GaAs PHEMT is an excellent
microwave deviceor low-noise and power
applications. It also has great potential for
achieving better p&rmance, lower cost
prodwction and more reliable device
operation while keep other critical
characteristics of the PHEMT intact.
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